
Exploiting Group Recommendation Functions for
Flexible Preferences

Senjuti Basu Roy ∗1, Saravanan Thirumuruganathan #2, Sihem Amer-Yahia +3, Gautam Das #4, Cong Yu −5

∗ Institute of Technology, University of Washington Tacoma
1 senjutib@uw.edu

Computer Science Department, University of Texas at Arlington
2 saravanan.thirumuruganathan@mavs.uta.edu

4 gdas@uta.edu
+ CNRS-LIG

3 sihem.amer-yahia@imag.fr
− Google Research

5 congyu@google.com

Abstract—We examine the problem of enabling the flexibility
of updating one’s preferences in group recommendation. In our
setting, any group member can provide a vector of preferences
that, in addition to past preferences and other group mem-
bers’ preferences, will be accounted for in computing group
recommendation. This functionality is essential in many group
recommendation applications, such as travel planning, online
games, book clubs, or strategic voting, as it has been previously
shown that user preferences may vary depending on mood,
context, and company (i.e., other people in the group). Prefer-
ences are enforced in an feedback box that replaces preferences
provided by the users by a potentially different feedback vector
that is better suited for maximizing the individual satisfaction
when computing the group recommendation. The feedback box
interacts with a traditional recommendation box that implements
a group consensus semantics in the form of Aggregated Voting
or Least Misery, two popular aggregation functions for group
recommendation. We develop efficient algorithms to compute
robust group recommendations that are appropriate in situations
where users have changing preferences. Our extensive empirical
study on real world data-sets validates our findings.

I. INTRODUCTION

Group recommendation, i.e., recommending items to a

group of users based on individual users’ preferences, is an

active research topic [1], [2], [3], [4]. It is usually based on

aggregating individual users’ preferred items into a single list

of recommendations to a group using a consensus function. In

this paper, we are interested in a specific scenario where users

are provided the flexibility to update their preferences during

recommendation time by choosing items they would like or

not to see, and the system accounts for those newly provided

preferences to compute recommendations to the group. This

new feature is useful in a number of practical applications such

as travel planning, online games, and book clubs, or strategic

voting [5], where users are likely to be in a different mindset

The work of Saravanan Thirumuruganathan and Gautam Das is partially
supported by NSF grants 0812601, 0915834, 1018865, a NHARP grant from
the Texas Higher Education Coordinating Board and grants from Microsoft
Research and Nokia Research.

at recommendation time and do not want the system to solely
rely on their past preferences. Enabling this flexibility gives

rise to novel unexpected challenges.

In the case of trip planning, most tour buses impose a rigid

itinerary with pre-determined destinations and risk alienating

users. Consequently, tour organizers have expressed interest

in adjusting trips by incorporating current preferences of the

users, when traveling with others. As was shown in previous

work [4], reaching consensus between group members is an

important step in group recommendation. Previous studies

have shown that users’ mood, context and company, may

affect their preferences [6], [7] Oftentimes, users will like to

update their preferences consciously in an effort to maximize

their individual satisfaction, by understanding the preferences

expressed by other members in the group. For example,

an individual may notice that her most desired item is not

preferred by many of the other group members, and is thus

unlikely to be recommended to the entire group. In such a

situation, it may be worthwhile for the individual to abandon

her original preference and provide a new preference for items

that are also popular with the other users, which will result

in generating a group recommendation that satisfies her the

most. This seemingly intuitive idea - i.e., how to update one’s

preferences in order to maximize individual satisfaction in

group recommendation - turns out to be quite challenging to

solve, and our investigation of this problem is one of the main

contributions of this paper.

Therefore, we introduce a flexible feedback model in

the form of a vector of preferences that any group member

could provide at recommendation time. Next, we propose

a feedback box that outputs a feedback vector for each

group member such that her satisfaction is maximized in the

generated recommendation, given her current preferences, if

the generated feedback vector is used in the group recommen-

dation generation process.

Enabling preferences that can be updated poses unexpected

challenges to popular group recommendation consensus func-

978-1-4799-2555-1/14/$31.00 © 2014 IEEE ICDE Conference 2014412

tions [3] - such as Aggregated Voting and Least Misery. In fact,

it is not enough for the system to use collected preferences

from group members (some members may choose not to

provide any, and let the system only use their past preferences)

and produce new recommendations. Our feedback box will

replace the preference vectors provided by the users by a

potentially different feedback vector that is better suited for

helping users enforce their new preferences. As we shall

see next, traditional group recommendation functions, when

applied in conjunction with a feedback box, generate recom-

mendations that dramatically maximize the satisfaction of an

individual member (for whom the feedback box is invoked),

given her current preferences.

Example 1. Consider a 3-member group G = {u1, u2, u3}
and a set of 5 POIs in London: Buckingham Palace, London
Eye, Tower of London, London Dungeon, British Museum, out
of which an itinerary with 3 POIs are to be recommended to
G. Assume u1 prefers Buckingham Palace, Tower of London,
and London Dungeon, u2 prefers London Eye, Tower of
London, London Dungeon, but u3 wants to visit Tower of
London, London Dungeon, British Museum. We explain this
example using Least Misery which maximizes the minimum
satisfaction (see Section II for formal definition) of the users.
User satisfaction is measured using a simple form of Jaccard
Index [8], namely Overlap Similarity (see Section II-B2 for
details), which is the size of the overlap between the preferred
and the recommended POIs. A recommendation for G could
be Buckingham Palace, Tower of London, London Dungeon,
which contains 2 out of the 3-POIs u3 wants to visit. If
u3 uses the feedback box instead, it internally converts u3’s
preferences into British Museum only, which results in a
recommended itinerary to G having Tower of London, London
Dungeon, British Museum. It is easy to observe that with the
help of feedback box u3 is more satisfied.

The above example shows that the preferences provided

by users at recommendation time may need to be converted

internally to maximize individual satisfaction when providing

the group recommendation1. A major challenge is to determine

the best feedback vector, given the current preference of a user,

where “best” is defined as maximizing user’s satisfaction in

the generated recommendation. For the feedback box to work,

it has to take into account both recommendation semantics

(consensus function), and the latest user preferences.

While our proposed solutions are easily extensible to ordinal

or numerical preference model (Section V contains the details),

we present most of the results using the Boolean preference

model that is natural and easy to use [9], where the preference

of an user for an item is binary - either she likes it, or not.

Surprisingly, under the Boolean preference model, the task of

accounting for flexible preferences is technically challenging,

since the optimal recommendation generation problem itself is

NP-hard (as we prove) under most group recommendation and

1if multiple users attempts to use the feedback box at the same
time, they are arbitrarily sequentialized.

user satisfaction semantics. We study the complexity of this

problem in-depth, and propose novel algorithms with provable

approximation factors. While the feedback box problem in

general is NP-hard (since it uses a recommendation subroutine

which itself is NP-hard), by assuming an oracle that can

compute group recommendations efficiently, we propose novel

efficient algorithms including a linear time optimal algorithm.
We realize that it can be disconcerting for existing users to

experience drastic changes to recommendations due to other

group members’ change in preferences. To alleviate that, we

introduce recommendation robustness, a key notion to ensure

that generated recommendations after preference updates over-

lap with the ones generated before. We formalize robustness in

group recommendation under changing preferences as a soft

constraint so that the recommendation system could tune that

parameter at its convenience. Most importantly, we empiri-

cally demonstrate that when multiple users use feedback box,

appropriately tuned recommendation robustness successfully

counterbalances the effect of feedback box, and still ensures

overall group satisfaction.
In summary, this paper makes the following technical con-

tributions:

• We motivate the need for a feedback box that enables

flexible user preferences at recommendation time.

• We prove that the usefulness of the feedback box is

strictly related to specific group recommendation seman-

tics and study Boolean preference model in depth.

• We develop efficient algorithms to enable online group

recommendations for optimizing flexible user preferences

and recommendation robustness.

• We run extensive offline and online quality experiments

to validate the need for a feedback box, validate recom-

mendation robustness, and study the performance of our

algorithms using multiple real-world datasets.

II. PRELIMINARIES

A. Interaction Model
To elicit preference, a user provides a Boolean vector

(Section V discusses extension to other feedback model),

where 1 corresponds to the items she prefers to consume,

and 0 otherwise. Feedback generation phase is followed next,

by invoking the feedback box for this user. During this

phase, the system, through the feedback box, computes for

the user a suggested Boolean feedback vector, such that if the

suggested feedback is used instead of her current preference
she provided, the recommendation generated by the group

consensus function would also maximize her satisfaction. The

idea of replacing the provided preference with a suggested
feedback vector is the main distinction between our work and

other feedback-based semantics [9]. Next, the system analyzes

the feedback of each member of the group, and recommends

at most k items (k is a given budget) to the group2.

2Under certain Boolean satisfaction measures, such as Hamming
Distance, it is possible that the group recommendation consensus
function is optimized with less than k items, even though the budget
is k. We explain these scenarios later on.

413

B. Data Model

A group G consists of a set of members {u1, u2, . . . , un}.
I = {i1, i2 . . . , im} is the set of items from which the

recommendation box has to suggest a set of at most k items.

1) User Preference Model: User preference is received in

the form of a vector of length m (should be read from left-to-

right) where the value at position j provides her user prefer-

ence for the corresponding item ij . We consider a Boolean

preference model (where 1 stands for positive preference,

and 0 for negative) that it is natural for many applications,

especially when the user is not very knowledgeable about the

domain (Section V contains extensions).

User Preference Vector: A preference vector under Boolean

model defines a subset of items that a user would like to

consume, and the ones she is not interested in. We denote the

preference of a user u by pref(u). As an example, the prefer-

ence vectors of two users u and u′ expressed over four items

that are Points of Interests (POIs) in Paris: “Eiffel Tower”,

“Jardin des Plantes”, “Musée d’Orsay” and “La Défense”, in

that order, could be pref(u) = 0111 and pref(u′) = 0011,

which convey the fact that the two users would like to visit

“Musée d’Orsay” and “La Défense” and not “Eiffel Tower”,

and disagree on “Jardin des Plantes.”

User Feedback Vector: Given pref(u) of a user u, given

an existing group G, the feedback box generates a Boolean

vector of length m for u, based on the optimization described

in Sections III and IV. This vector is the generated feedback

(feedback(u)) that the recommendation function uses as input

to recommend items to the group that includes u.

2) Item Recommendation: The output of the recommen-

dation function is a Boolean vector of length m that is

constrained to have at most a budget of k 1’s, where a 1 at

the j − th bit (should be read from left-to-right) corresponds

to the positive recommendation of an item ij . The output

recommendation is denoted Ik. The budget constraint of k
applies to many practical scenarios - e.g., a group itinerary

cannot visit more than k points of interest (items).

Robustness: By design, the generated recommendation in

our system may change, whenever pref(u) changes. As a

result, the set of recommendations generated for two different

versions (in terms of change in user preference) of the

group often differ. Given two recommended item-sets (each

is a Boolean vector of length m), I ′k and I ′′k, generated

when some user updated her preference, the robustness

quantifies the similarity between I ′k and I ′′k using similarity

measures. Smaller distance (or higher similarity) denotes

higher robustness of recommendation to preference updates.

User Satisfaction: Given the preference vector pref(u) of a

user u and a recommended item vector Ik, we define user
satisfaction, Su, as the inverse of the distance between the

two vectors, or proportional to the similarity between them.

Traditional distance measures such as Hamming distance and

Jaccard Similarity [8] are natural candidates for this purpose.

Additionally, we consider a simpler notion of Jaccard Similar-

ity in this work, namely Overlap Similarity that enables us to

design efficient algorithms. More precisely, Overlap Similarity

is defined as Su = Σ∀j∈m(pref(uj) × Ikj), i.e., the number

of positive bits that are shared between the user’s preference

and the recommended items.

3) Group Recommendation Functions: We consider two

natural and popular group recommendation functions, denoted

by F . Those functions reflect different group consensus se-

mantics [4]. Each group recommendation function needs to

work in conjunction with a specific user satisfaction measure.

Aggregated Voting: Given feedback(u), 3 ∀u ∈ G, and k, the

Aggregated Voting Consensus generates a set of items Ik such

that Σ∀u∈GSu is maximized. For example, given two users

with feedback(u) = 1110 and feedback(v) = 0111, and k
set to 2 POIs, the resulting recommendation for the group of

u and u′ under the aggregated voting semantics will be 0110,

which produces an overall aggregated user satisfaction of 4
(2 for u and u′ respectively) under overlap similarity measure

for user satisfaction.

Least Misery: Given feedback(u), ∀u ∈ G, and k, the

Least Misery Consensus generates a set of items Ik such that

Min∀u∈GSu is maximized. For example, given four feedbacks

from the users in a group, 0101, 1101, 1001, 0010, and k
set to 2 POIs, the resulting recommendation for the group

under the least misery semantics will be 0011, which produces

a minimum user satisfaction of 1 under overlap similarity

measure for user satisfaction.

C. Problem Definitions
1) Recommendation Generation: Under a flexible user

preference model, the recommendation generation task is exe-

cuted whenever the preferences of a user are updated. Input to

the recommendation function is the latest feedback vectors of

all members in G, and a budget k (i.e., the maximum number

of items to be recommended). Output is the recommendation

vector Ik with at most k 1-bits. The items that have 1
corresponding to their position are chosen and recommended

to the entire group. The goal is to find Ik such that it optimizes

user satisfaction based on the employed group consensus

function F .

2) Feedback Generation: The feedback box is executed

whenever a member u updates her preferences. Input to the

feedback box is the new preference of u, i.e., pref(u), the

feedback vectors feedback(u′) (∀u′ �= u ∈ G) of other

existing members, the current budget k′, 4 and the group

recommendation objective F (see Section II-B3). The output

is a Boolean feedback vector, feedback(u), of length m for

u. The goal is to compute feedback(u), such that given

feedback(u), feedback(u′) (∀u′ �= u ∈ G), k′, and F , the

recommendation box computes I ′k such that Su is maximized.

3Note that the group recommendation functions can also admit
pref(u) instead of feedback(u) .

4As items are being consumed, e.g., a POI gets visited, the budget
will gradually shrink.

414

D. Summary of Results

Among different Boolean satisfaction measures, only Over-
lap Similarity satisfies a monotonicity property (explained in

Sections III-A and III-B) which allows us to design efficient al-

gorithms with provable theoretical guarantees. For brevity, we

report results on Overlap Similarity and Hamming Distance for

two different group consensus functions in Sections III and IV.

Unless otherwise stated, solutions for Hamming Distance can

be trivially extended to Jaccard Index as well. We summarize

our main technical contributions in Figure 1.

 Aggregated Voting Least Misery
Overlap

Similarity
Recommendation Generation:
Optimal Algorithm R-AGS
Complexity: O(mn)

Feedback Box: Not Useful

 Recommendation Generation:
NP-hard Problem
Greedy Approximation Algorithm R-
LMS with approximation factor (1-1/e)
Complexity: O(kn)

Feedback Box: Useful
NP-hard Problem
Optimal Algorithm FB-LMS
(considering an oracle for
recommendation computation)
Complexity: O(m)

Hamming
Distance

Recommendation Generation:
NP-hard problem
Algorithm R-AGD, based on
centroid computation relaxing
integrality constraint, followed by
deterministic rounding.
Complexity: O(mn)

Feedback Box: Useful
NP-hard problem
Algorithm: FB-AGD, based on
Quadratic Programming
formulation relaxing integrality
constraint, followed by
deterministic rounding.
Complexity: polynomial

Recommendation Generation:
NP-hard problem
Algorithm: R-LMD, based on Quadratic
Programming formulation relaxing
integrality constraint, followed by
deterministic rounding.
Complexity: polynomial

Feedback Box: Useful
NP-hard problem
Algorithm: FB-LMD, based on
Quadratic Programming formulation
relaxing integrality constraints, followed
by deterministic rounding.
Complexity: polynomial

Fig. 1. Summary of Results

III. AGGREGATED VOTING CONSENSUS

We discuss algorithms for computing recommendation and

feedback vector after a user updated her preference for Aggre-

gated Voting (described in Section II-B3), under Overlap Simi-

larity and Hamming Distance. For each similarity measure, the

recommendation algorithm is first described considering the

updated preference of the user without feedback box, followed

by the discussion considering feedback box in conjunction.

Example 2. Imagine that a group G of 3(n) travelers
u1, u2, u3 are going to visit at most 3(k) different places.
Each place is an item, and an ordered list of possible 5(m)
items are {i1, i2, i3, i4, i5}. u3 updates her preferences to
pref(u3) = 00011 (meaning, she is now interested in i4, i5).
The feedback vectors of rest two travelers (obtained after
running their individual preferences through feedback box) are
as follows: feedback(u1) = 11000, feedback(u2) = 10011.

A. Overlap Similarity

Recall that Overlap Similarity only considers the items for

which user has expressed preference by setting the corre-

sponding bit in the preference vector to 1. Under Aggregated

Voting, the recommendation task becomes determining a set
of items that maximizes the sum of Overlap Similarity for all

group members (aggregated satisfaction). Overlap Similarity

is monotonic, as adding an item to the recommended set only

improves the Overlap Similarity value (thereby satisfaction).

Due to this property, the optimal recommendation will always

contain k items.

1) Generating Recommendations: Due to the monotonicity

property, recommendation computation can progress in an

iterative, item-by-item manner. We describe our proposed

algorithm R-AGS that computes an optimal recommendation

in O(mn) time.

Algorithm R-AGS: Given the feedback vectors of all users

in the group, R-AGS associates a score for each item ij ∈ I.

The score of an item ij is defined as the number of users in

the group who have expressed preference for ij . After this

step, R-AGS chooses the k-items with the highest scores (i.e.

the top-k items preferred by the most users) to be presented

as recommendation Ik. Notice that ties are broken arbitrarily

as each choice still results in the same value of overall group

satisfaction.

Consider the scenario described in Example 2. The set of

items recommended by R-AGS (where k = 3) (considering

feedback(u1), feedback(u2), pref(u3)) are : {i1, i4, i5}. As

we can see, each of the chosen POIs is desired by more users

than the ones not picked. In other words, R-AGS computes

recommendation vector Ik as 10011 for the group.

2) Generating New Feedback Vector: We now describe

the process for generating feedback vector using Example 2,

where user u3 uses the feedback box. The task for feedback

box is to generate new feedback(u3) (potentially different

from pref(u3)) such that Su3(pref(u3), I ′′k) is maximized,

where

I ′′k = F(feedback(u1), feedback(u2), feedback(u3))

I ′′k is 10011 when feedbacks of users u1, u2, u3 is con-

sidered. Observe that any update of preferences of a user (u3

here) only affects the possibility of a subset of these 5 items to

be included (or excluded) to the new recommendation: items

that have j, j+1, j−1 scores (where j is the aggregated score

of the k-th item without the user who updated her preferences).

Let X be that set. For example, i1 will be present in the

generated recommendation, irrespective of whether u3 prefers

it or not. Let the items that are set to 1 in pref(u3) be denoted

by Y . Observe that u3’s satisfaction (Su3
) could be maximized

as long as the generated feedback(u3) contains those items

that are present in {X ∩Y}. Thus, the following lemma holds:

Lemma 1. Given a user u, items in feedback(u) are always
a subset of items in pref(u).

Furthermore, observe that the presence/absence of the ad-

ditional items {Y − X} in feedback(u) does not change

Su, simply because the feedback of u alone is insufficient to

promote them to the generated recommendation. An exception

to this happens when the lowest aggregated score of an item

in {X ∩ Y} is 1, then the additional {Y − X} items should

415

also be included in feedback(u) (to exploit the benefit of ties)
5 . In either case, the following theorem holds:

Theorem 1. feedback(u) will be at most as useful6 as
pref(u).

Thus, we conclude that the feedback box is not useful when

the consensus function is aggregated voting and satisfaction

measure is Overlap Similarity.

B. Hamming Distance

Unlike Overlap Similarity, Hamming Distance is measured

by considering both 0 and 1 preferences. Unlike Overlap

Similarity, Hamming Distance does not satisfy monotonicity

property: suppose there exists only one pref(u) and any

given Ik. Based on that, Su could be computed. Now, if we

arbitrarily set one of the 0-bits in Ik to 1, that may decrease Su
(as the Hamming Distance may now be even larger). For the

same reason, an optimal Ik may not always contain k 1’s. This

precludes the iterative approach and makes recommendation

and feedback generation to be substantially challenging.

1) Generating Recommendations: The optimal recommen-

dation vector maximizes the aggregated group satisfaction by

minimizing the aggregated Hamming Distances between the

respective feedback vectors and the generated recommenda-

tion. Since Hamming Distance could be expressed in L2 mea-

sure, this definition is equivalent to the Facility Location [10]

or Geometric Median Finding [11] problems. Unfortunately,

this problem and several of its variants have shown to be NP-

hard [12], [13].

Consider a slightly different variant of this classical defini-

tion, where the task is to minimize the aggregated square of

the distance (as compared to the aggregate distance). The new

objective function is still natural and minimizes the aggregate

distance. This variant is equivalent to the geometric problem

of finding the centroid of a set of points. Unlike geometric

1-median finding problem [14], finding centroid of a set of

points is computationally much easier in geometric settings,

as each coordinate of the centroid could simply be expressed

as the average of the samples of that coordinate. We adopt

this latter definition for our problem, as it enables us to design

efficient algorithm while still producing a recommendation that

is meaningful. Formally, the task is to,

Compute Ik s.t. Σ∀u∈GHamming(Ik, feedback(u))2
is minimized.

Even after we adopt the centroid definition, the generated

recommendation vector needs to be Boolean in our case.

While efficient solutions could be designed when there are

only 2 users, the integrality constraint gives rise to significant

computational challenges, for general n and m.

Theorem 2. The decision version of the Ik generation prob-
lem is NP-complete.

5In the given example feedback(u3) is equal to pref(u3).
6Usefulness denotes the improvement in user satisfaction.

Algorithm 1 Subroutine Centroid

Input: feedback(u1), feedback(u2) . . . feedback(un);
Output: Centroid C : a vector of size m

1: Cj =
Σn

i=1(feedback(u
j
i))

n
, ∀j ∈ m;

2: return C;

We omit the details for brevity, and note that our proof uses

a reduction from SAT [15], similar to Theorem 5 .

Algorithm R-AGD: The basic idea of this solution is to relax

the integrality constraint, and then solve it as a centroid finding

problem in geometric settings using Algorithm 1. For the j-

th item, Cj is computed as the average of all the feedback

vectors in the group. This task overall takes O(m× n) time.

Once the centroid is obtained (of length m), we perform a

deterministic rounding; In other words, recommendation bit

for the j-th item is set to 1, if Cj >= 0.5; otherwise, it is set

to 0. The centroid C becomes the recommendation vector Ik
after rounding. However, such a rounding that is oblivious to

values of other items could result in a vector that has more than

k ones. In such a case, we arbitrarily choose k of those 1’s, and

set the remaining bits to 0. This yields the final Ik. We note

that this rounding process may introduce an approximation

in the computed Ik. We leave the theoretical analysis of the

approximation factor to future work, but evaluate it empirically

in Section VII.

Considering feedback(u1), feedback(u2), pref(u3) of Ex-

ample 2, Algorithm R-AGD turns the following 2 items to 1
for the group in the generated Ik: {i1, i4}; remaining 3 items

are all set to 0.

2) Generating New Feedback Vector: Recall from the pre-

vious subsection, that the optimal recommendation is (Ik)

10010, when the feedback box is not used. Su3
is 2 here,

as the Hamming Distance between u3 and Ik is 2. But

if feedback(u3) = 01111 is used instead, the generated

recommendation I ′′k will be forced to include one of the items

that u3 prefers; i.e., one optimal generated recommendation

I ′′k will be 01011. Note that now Su3
is improved further,

since the Hamming Distance between pref(u3) and I ′′k is

just 1 now.

Lemma 2. Given a user u, there exists a feedback(u) that
will be at least as useful as pref(u).

Algorithm FB-AGD: Computing an optimal feedback(u)
for the user who has updated her profile is NP-hard as the

recommendation subroutine it uses is itself NP-hard (see

Section III-B1). Our proposed solution FB-AGD works as

follows: Let u be the user who has a new preference. Then

we formulate feedback(u) computation as an optimization

problem, such that the objective function maximizes Su (by

minimizing the Hamming Distance between pref(u) and the

generated recommendation). Each of the variables (items) in

feedback(u) are required to be between 0 and 1 (but not

416

necessarily integers) 7. After that, it performs deterministic

rounding, and obtain a Boolean feedback(u4). Formally, the

task is to

minimize Hamming(pref(u), Ik)
subject to |feedback(u)| = m

0 ≤ ∀i ∈ feedback(u) ≤ 1

Ik = F(feedback(u1), . . . , feedback(u))

During the computation of feedback(u), Algorithm FB-
AGD uses Subroutine 1 for generating Ik’s.

Output of this quadratic optimization problem assigns a

value (between 0 and 1) to each of the m variables (items) of

feedback(u); 8. Since the final output needs to be Boolean,

deterministic rounding is performed that transforms any item

with fractional value ≥ 0.5 to 1, and the remaining to 0. This

yields our final feedback(u). Note that this rounding process

may introduce approximations in the final feedback(u); The

theoretical analysis of the approximation factor is left to

future work, while we experimentally evaluate these factors

in Section VII.

IV. LEAST MISERY CONSENSUS

We next discuss algorithms for computing recommendation

and feedback vector for Least Misery (described in Sec-

tion II-B3), under Overlap Similarity and Hamming Distance.

Recommendation robustness could be ensured following tech-

niques described in subsection VI.

We describe our running example in Example 3 for this

section. For each similarity measure, the recommendation

algorithm is first described considering the updated preference

of the user without feedback box, followed by the discussion

considering feedback box in conjunction.

Example 3. Group G consists of 3(n) travelers u1, u2, u3

to visit at most 3(k) different places. An ordered list of
possible 5(m) items (i.e., places) are {i1, i2, i3, i4, i5}. u3

updates her preferences to pref(u3) = 00111 (meaning, she
is now interested in i3, i4, i5). The feedback vectors of rest two
travelers (obtained after running their individual preferences
through feedback box) are as follows: feedback(u1) = 10110,
feedback(u2) = 01110.

A. Overlap Similarity

1) Generating Recommendations: We are interested to

compute Ik such that the minimum satisfaction of the group is

maximized (i.e., the minimum Overlap Similarity between the

generated recommendation and the individual feedback vector

(or preference vector) is maximized).

When there are only two users in the group, computing Ik
is simple. Intuitively, the task is to consider the items where

7That task could be formulated as a convex optimization prob-
lem, where the objective function as well as the constraints could
be expressed as positive definite matrices; this form of quadratic
programming admits a polynomial time solution.

8Integrality constraints are relaxed because integer programming is
NP-hard.

the user’s respective feedback vector differs. The algorithm

splits those items in two equal halves, and the generated rec-

ommendation sets the items of each of these halves according

to the feedback vector of one user. This simple computation

could be done in O(m) time. However, this simple process

fails to extend for a general n and m.

Theorem 3. The decision version of the Ik generation prob-
lem is NP-complete.

Proof: The decision version of the problem of recommen-

dation generation is as follows: For a given set of feedback

vectors (feedback(u1), feedback(u2) . . . feedback(un)), de-

fined over a set of m items, is there a recommendation vector

Ik such that the Least Misery value is 1. The membership

of the decision version of the recommendation generation

problem in NP is obvious. To verify its NP-completeness, we

reduce the Hitting Set(U, S) [15] problem to an instance of

our problem.

We consider an instance of Hitting Set(U, S) [15]; we are

required to construct an instance of recommendation problem,

where each set represents a feedback vector feedback(ui), and

the task is to compute Ik such that the Least Misery is 1; such

that there exists a Hitting Set of size k, covering each set in S,

if and only if, a solution to our instance of recommendation

problem exists (each 1-bit in Ik corresponds to an element of

the Hitting Set).

Approximation Algorithm R-LMS: As the problem is NP-

hard, we propose an efficient yet effective approximate solu-

tion that incrementally composes the recommendation vector

in a greedy manner. Algorithm R-LMS initializes each item

of Ik to 0 in the beginning. After that, it operates in k-

iterations, where a single item is selected in each iteration,

and the corresponding bit is set to 1 in the partially computed

Ik according to one rule: at each iteration, it selects an item

that is not yet set in Ik from that user who has the current

Least Misery value (i.e., least overlap with the current Ik).

The algorithm terminates when exactly k bits of Ik are set to

1 in this process.

R-LMS generates Ik that sets the following 3 items to

1 in Example 3 for feedback(u1), feedback(u2), pref(u3):
{i1, i3, i4}.

Compared to its optimal counterpart, R-LMS is efficient,

as Ik could be generated in O(k × n) time. Additionally, it

has a provable approximation factor, as we discuss next.

Approximation Factor: We begin by describing our strat-

egy for proving approximation guarantees. Consider an arbi-

trary function f() that maps the subsets of a finite ground

set U to non-negative real numbers9 . We say that f() is

submodular [16], [17] if it satisfies the “diminishing-returns”

property: the marginal gain from adding an item to a set S
is at least as high as the marginal gain from adding the same

element to a superset of S. Formally, a submodular function

satisfies

9Overlap Similarity satisfies this form: It maps each subset of the
item-set I to a real-number in Ik denoting the Overlap Similarity if
that subset is included in Ik.

417

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T)

for all elements v, and all pairs of set S ⊆ T .

Lemma 3. Algorithm R-LMS approximates the Least Misery
of the generated Ik within (1 − 1

e) factor of the optimal
solution.

Proof: Overlap Similarity is monotonic, and could be

proved to satisfy the “diminishing-returns” property. We omit

the details for brevity. Algorithm R-LMS is akin to the greedy

strategy described above [17]. Hence, it admits the above

approximation factor.

2) Generating New Feedback Vector: With updated

pref(u3) of Example 3, recall a possible Ik = 10110. Note

that, Su3
is 2 (as u3’s desired i3 and i4 items are present

in Ik). Instead of that, if feedback(u3) = 00001 is used

as an input along with feedback(u1), feedback(u2), then a

possible I ′′k = 00111. Note, now, u3 is fully satisfied with

the generated I ′′k (it contains all 3 of her preferred items).

Therefore, the following lemma holds.

Lemma 4. Given a user u, there exists a feedback(u) that
will be at least as useful as pref(u).

The above example leaves some intuition for designing

feedback(u3). Observe that even when u3 is not considered

at all, any recommendation considering users u1, u2 has to

have items i3 and i4 in it. Intuitively, these items should

not be present in feedback(u4). The idea is to set only

those items that are exclusively preferred by u3, and com-

pose feedback(u3) such that the recommendation function

is forced to select some of those items. This intuition is

formalized further in our proposed algorithm FB-LMS.

Optimal Algorithm FB-LMS: Without loss of generality, let

u1, u2, u3, . . . , un be the users in a group, where ui has a

preference update. Let X be the set of k items that are set to

1 in the generated recommendation (i.e., in I ′k) for G, without

considering ui. Let Y be the items that are present in ui’s latest

preference. Algorithm FB-LMS generates that feedback(ui)
which only sets {Y − X} items to 1.

Note that the feedback box is an NP-hard problem, since its

recommendation counterpart is shown to be NP-hard above.

However, if an oracle for recommendation computation is

assumed, we claim that this surprisingly simple set difference

based algorithm generates optimal feedback vector for the

latest preference of the user, as we shall prove next.

Lemma 5. Let {Y ∩ X} be the subset of the items that are
present in one of the optimal recommendation vectors (I ′k)
for G (without ui). With an updated pref(ui), {Y ∩X} items
will still be present in one of the new optimal recommendation
vector (Ik) .

Proof: We prove the above lemma by contradiction. Let

us assume that such a recommendation vector Ik does not

exist. This means that the set of {Y ∩ X} items are now

replaced by a new set of |Y ∩ X | items. We note that such a

substitution will only happen if {Y∩X} are not present in the

updated pref(ui). That is a contradiction; since {Y∩X} ⊂ Y ,

and Y is present in the updated pref(ui). Therefore, one

optimal Ik sets all the items in {Y ∩ X} to 1 .

Given the above lemma, we can additionally prove:

• It is not useful to set the items in {Y ∩ X} to 1 in

feedback(ui).
• Sui

can only increase if the items in {Y−X} are included

in feedback(ui).
• Sui

is only higher for feedback(ui) that contains the

items in {Y − X}, compared to any other feedback that

contains its proper subset (S ⊆ {Y − X}).
Therefore, the following theorem holds.

Theorem 4. Given a user u, FB-LMS generates optimal
feedback(u).

Algorithm FB-LMS generates feedback(u) in O(m) time,

if an oracle for recommendation computation is assumed.

B. Hamming Distance

1) Generating Recommendations: We are interested to

compute Ik such that the minimum satisfaction of the group is

maximized (i.e., the maximum Hamming Distance between the

generated recommendation and the individual feedback vector

(or preference vector) is minimized).

As Hamming Distance could be expressed in L2 measure,

under Least Misery, the task of recommendation computation

is analogous to finding the smallest enclosing ball [18] in

Computational Geometry. Similar to the case of Aggregated

Voting, the geometric exact and approximate solutions [19]

are inappropriate, as we study the problem in very high di-

mension [18], and intend to generate a Boolean vector. Again,

the task is easy to solve for 2 users, but remains extremely

complex for general n and m. Moreover, unlike the problem

in Section IV-A1, it does not admit a greedy solution, as

Hamming Distance does not satisfy the monotonicity property.

Theorem 5. The decision version of the Ik generation prob-
lem is NP-complete.

Proof: The decision version of the recommendation gen-

eration problem is as follows: For a given set of feedback

vectors (feedback(u1), feedback(u2) . . . feedback(un)), de-

fined over a set of m items, is there a recommendation vector

Ik such that the Least Misery (based on Hamming Distance)

is m − 1. The membership of the decision version of the

recommendation generation problem in NP is obvious. To

verify its NP-completeness, we reduce SAT [15] to an instance

of our problem.

We consider an instance of SAT [15] with m variables,

where each clause contains all m variables, and the Boolean

expression is a conjunction of n clauses. We are required to

construct an instance of our recommendation problem where

each clause represents a feedback vector feedback(ui) of one

of the n users and the task is to generate an Ik that has

the Least Misery (maximum Hamming Distance between Ik
and the feedback vectors) value of m − 1; such that there

418

exists an assignment of the m variables which satisfies the

Boolean expression, if and only if, a solution to our instance

of recommendation problem exists.

Algorithm R-LMD: We design our proposed Algorithm R-
LMD as an optimization problem, as the task could be

translated in the form that admits polynomial time solution

(convex optimization problem on positive definite matrices).

Given n feedback vectors defined over m Boolean variables

(items), the task is to compute Ik, such that each variable in

Ik is between 0 − 1 (but not necessarily integers). Formally,

the task is to,

minimize Max(Hamming∀u∈G(Ik, feedback(u))
subject to 0 ≤ i (∀i ∈ Ik) ≤ 1

|Ik| = m

Ik = F(feedback(u1), . . . , feedback(un));

This quadratic equation is solved by a general purpose solver

to obtain a Ik, where each i ∈ Ik is a fractional value between

(0, 1). After that, we perform a deterministic rounding as

explained in Section III-B1 such that the resultant Ik may

at the most have k-1’s.

Algorithm R-LMD sets the following 3 POIs

to 1 in Example 3 for the group considering

feedback(u1), feedback(u2), pref(u3) : {i1, i3, i4}. The

rest of the items are all set to 0.

2) Generating New Feedback Vector: Recall if pref(u3) of

Example 3 is used, an Ik will be 10110. If feedback(u3) =
00001 is instead used, generated I ′′k will be 00111. With I ′′k,

u3 is more satisfied.

The optimal feedback generation is an NP-hard problem,

since its recommendation counterpart is proved to be NP-hard.

Similar to the recommendation computation algorithm, we

propose algorithm FB-LMD based on quadratic optimization

(relaxing integrality constraints) which admits polynomial time

solution. However, there are non-trivial challenges to do so,

as we describe next:

Algorithm FB-LMD: Without loss of generality, given the

updated preference of user a u, the task is to generate

feedback(u) that maximizes Su (by minimizing Hamming

Distance). Note that the optimizer may need to compute

multiple Ik in this process, where computing Ik itself is an

optimization problem. The objective function admits only one

optimization task, and the rest is expressed as constraints.

This requires careful formulation, as the recommendation

computation now needs to be expressed as constraints, without

compromising its correctness. The problem is formalized as

follows:

minimize d = Hamming(Ik, pref(u))
subject to feedback(u, Ik) ≤ d, ∀u ∈ G

feedback(u, Ik) ≤ d

0 ≤ i ≤ 1, (∀i ∈ feedback(u))

|feedback(u)| = m

Note that, although the recommendation task is expressed

as a set of constraints, with this careful formulation, the

optimizer always produces a correct result; as the task now

is to minimize the Hamming distance (corresponds to d in the

formulation), and in turn generate recommendation where the

Least Misery is not larger than that distance.

The optimizer generates feedback(u) with m variables,

where each variable may be a fraction between 0 and 1.

Deterministic rounding is then performed as we have done

in Section III-B1. This yields the final feedback(u). We note

that the rounding process may introduce approximation in the

final result. The empirical analysis of the approximation factor

is studied in Section VII, while the theoretical analysis is

deferred to future work.

V. NON-BOOLEAN PREFERENCE MODELS

In this section, we generalize the user preference model

and describe how our algorithms can be adapted. Thus far,

user preferences were expressed as a Boolean vector where 1

corresponds to the items she prefers to consume. Two natural

alternatives are numeric or ordinal preference models. Under

numeric preference model, the user expresses her preference

for an item as a real number between 0 and 1, where 1
represents the highest preference. Under an ordinal preference

model, user expresses her preference over items through a

discrete set of values (such as not liked, neutral, liked, very

liked). However, in contrast to categorical values, there exist

an ordering between preferences. A user would prefer an item

with neutral preference over one with not liked preference.

Both the user preference vector and the feedback vector are

expressed using the non-Boolean preference model. For both

cases, user satisfaction with the generated recommendation

needs to be measured considering generalized distance mea-

sures (e.g., Euclidean distance). The group recommendation

functions, aggregated voting and least misery, can naturally

be extended to this setting.

Generating group recommendation for numeric user pref-

erences have been studied previously [3], [1]. Unfortunately,

when the user preferences are expressed in ordinal scale, the

problem becomes NP-hard. However, our recommendation

algorithms for Boolean preferences can be easily extended

to generate group recommendations. Similarly, the feedback

generation algorithms can easily be extended to non-Boolean

preference models. For numeric preferences, our optimization

formulation is still valid. However, the integrality constraints

that necessitated user preferences to be Boolean could be

relaxed. The objective function with the altered constraints

defines a convex quadratic optimization problem for which

solutions can be computed efficiently in polynomial time.

However, the computational complexity remains unchanged

for ordinal preference model, since the generated feedback

vector needs to select one of the discrete values from its

ordinal domain. Our proposed algorithms can be adapted by

treating the ordinal scale as numeric and post processing the

solution back to ordinal scale.

419

VI. RECOMMENDATION ROBUSTNESS

After a dynamic update of user preference, the feedback box

followed by recommendation generation process needs to be

re-invoked, which may generate a different recommendation

vector. In this section, we discuss recommendation robustness
to ensure that the generated recommendations are not too
different before and after one (or a small number of) user

preference updates.

Robustness is considered as a soft constraint that could

further be tuned. Alternatively, one may also think of it as

a hard constraint, where the task would be to generate that

recommendation, which not only optimizes group satisfaction,

but also contains the highest similarity with the previous

recommendation. Expressing robustness as a hard-constraint

has several shortcomings: first, one has to enumerate all

possible optimal recommendations (as there could be mul-

tiple optimal solutions), which is prohibitively expensive to

compute; second, the proposed techniques fall short, and the

theoretical results do not hold under such settings. Conversely,

we easily adapt robustness to our solution framework as a

soft tunable constraint. The primary idea is to add previously

generated recommendation(s) as new feedback vector(s) (as

pseudo-users) to the recommendation function. Not only that

applications that desire high degree of robustness, may poten-

tially replicate the same recommendation vector several times,

and input all of them as multiple feedback vectors to the

recommendation function. This should achieve higher degree

of robustness, as we shall see in our experimental study. All

our theoretical results are extended under this setting.

VII. EXPERIMENTS

We conduct a comprehensive set of performance and quality

experiments using real world datasets extracted from Lonely

Planet, Flickr, and MovieLens10. Our prototype system is

implemented in C++ using IBM CPLEX as the solver for ILP

and QP formulations. All experiments are conducted on an

AMD machine quad-core 2.0GHz CPUs, 8GB Memory, and

1TB HDD, running Ubuntu 12.10. All numbers are obtained

as the average of five runs.

A. Summary of Experimental Results

For brevity, we present scalability results conducted on

the large dataset (MovieLens, 10M data corpus), and quality

results conducted on the relatively smaller dataset (Lonely

Planet and Flickr). The omitted results are similar to the ones

depicted. The usefulness of the feedback box is validated using

extensive quality and user-study experiments where we record

the instances where one of the group members updates her

preferences necessitating the invocation of feedback box and

subsequent recommendation generation.

Our primary observations are as follows: a) the presence

of a feedback box is deemed always useful. The degree of

10http://www.lonelyplanet.com/, http://www.flickr.com/services/
api/, http://www.grouplens.org/node/73

usefulness varies; it is most useful for Least Misery recom-

mendation. Furthermore, the presence of a feedback box is

critically important for groups formed by users with similar

preferences. b) Our group consensus functions and Boolean

preference measures are enthusiastically preferred by human

evaluators. c) Finally, our proposed robustness technique is

both effective and efficient in handling changing preferences

in group recommendation.

B. Data Preparation

City Names and POI Generation: We consider 12 popular

tourist destinations (cities) and their POIs (Points of Interest).

Popular POIs of those cities are extracted using Lonely Planet
dataset. London, New York, Barcelona, Bangkok, Amsterdam
are some example cities we consider. The number of POIs per

city varies between 35 and 163.

User Preferences for Travel dataset: We use publicly

available Flickr photos to simulate Boolean preference vectors

for users. They are tagged with corresponding POI names, and

the respective date/time associated with the photos define the

itineraries (such as, a set of POIs visited on the same day).

Given a Flickr log of a city, each row in that log corresponds

to a user itinerary that is visited in a 12-hour window. The set

of POIs present in each itinerary constitutes a pref(u).
User Preferences for MovieLens dataset: The MovieLens

dataset contains 10 million movie ratings (from 0.5 to 5)

provided by 71567 users, over 10681 movies. We adopt a

simple procedure to convert numerical ratings to Boolean

preferences: a rating smaller than 3 is transformed to a 0,

or transformed to a 1, otherwise. A rating of 3 is considered

neutral, and is excluded from further considerations. Given a

set of movies I (i.e., items), the Boolean preference vector

pref(u) is thus generated for each user. A movie not rated by

user u is treated as 0 in pref(u).

C. Performance Experiments

We report efficiency results for the recommendation algo-

rithm and feedback boxes under different user satisfaction

measures and group consensus functions using MovieLens

dataset. Performance is recorded by mainly varying 3 pa-

rameters - number of items in the generated recommendation

(k), group size (n), and total number of items (m). The total

running time of the system is the aggregated running time of

the recommendation and feedback box.

1) Recommendation Generation: As a straw-man competi-

tor, a brute-force algorithm (referred to as Brute-Force) is

also implemented. This enumerates and evaluates all possible

combinations before selecting the best answer.

Varying Budget k: We study the running time of different

recommendation algorithms by varying k, the number of

recommended items at each iteration. We fix n at 5000, and m
at 5000. Figure 2 shows the output of this experiment. Brute-

Force quickly becomes very expensive even for small values of

k(< 5), therefore, we use secondary Y -axis for that in minute

scale. Our algorithms are very efficient (scale linearly with

k) and are measured in seconds using the primary Y -axis.

420

Hamming Distance-based algorithms, exhibit higher running

times than their Overlap Similarity counterparts.

Varying Group Size n: In this experiment we set k =
100, m = 5000 and compute recommendation for different

group sizes. Figure 3 shows the result. While the running time

increases with group size, this increase is much slower with

increasing values of n. This is due to the fact that algorithm

complexity depends on m.

Varying Total Number of Items m : Here, we set k =

100, n = 5000. Figure 4 shows the result. We fail to report

the performance of the brute force algorithm as it takes hours

to execute. The running time of R-AGD stays almost constant.

The performance of other recommendation algorithms show a

steeper increase in comparison, as additional items exponen-

tially increase the number of potential candidate solutions.

2) Feedback Box: Varying Budget k: Our empirical study

shows that the running time of the feedback box remains

almost unchanged for all the algorithms with varying k. For

brevity, we omit those results.

Varying Group Size n : In this experiment, k is set to 100,

and m = 5000. Figure 5 shows the result. Run-time of FB-
LMS remains constant with varying n because this algorithm

relies on set difference that depends only on m. Both FB-
LMD and FB-AGD are based on Quadratic Programming, and

demonstrate similar performance. Note that group size bears

significant impact on the running time of the recommendation

algorithms, unlike its feedback box counterpart, where the

impact is minimal.

Varying Total Number of Items m : Here k = 100, and

n = 5000. Figure 6 shows that while FB-LMS scales linearly

with increasing m, QP based algorithms FB-LMD and FB-
AGD have a steeper increase in running time.

D. Quality Experiments

1) Offline Quality Experiments: We qualitatively evaluate

how feedback box improves the satisfaction of the user (with

updated preference) in the generated recommendation, com-

pared to her (latest) preference.

User Satisfaction with feedback box: The objective is

to verify if Su is improved in the presence of a feedback

box. Parameters are set at m = 125, k = 20, n = 75. The

usefulness of a feedback box is evaluated by varying pairwise

similarity between users in a group. The similarity of a group

is computed as the average pairwise Jaccard Index [8] of the

preference vectors. The group similarity varies between 0.1
and 0.5. Given a u, ΔSu is measured in Y-axis with and

without a feedback box. Figure 8 shows the result.

Under both preference measures, Su is higher when a

feedback box is used. However, the degree of usefulness

is maximum for groups with similar members and Least

Misery consensus function; this observation is intuitive, as

it is expected that the feedback box would suggest a more

effective feedback(u), when existing group members are

similar to each other. The usefulness of the feedback box

however is minimal under Aggregated Voting; this is also

intuitive, as Aggregated Voting is less sensitive to individual

user satisfactions compared to Least Misery.

Group Size Vs User Satisfaction: In this experiment, we

evaluate the change in Su with increasing n. Figure 7 shows

the result, where k = 20, and m = 75. Overall, we observe

that user satisfaction decreases as the group size increases. The

drop is mildest under Aggregated Voting. This is due to the

fact that in order to replace an item in the recommendation

with a different one (chosen from the items in user’s new

preference), a majority of the existing users would have to

prefer it. The decrease is steepest for Least Misery, as it tries

to satisfy these new users with increasing group size, causing

Su to further decrease.

Empirical Evaluations of Approximation Factor: Recall

that algorithms R-AGD and R-LMD for recommendation

generation and FB-AGD and FB-LMD for feedback box

generation are approximate in nature. Each of them involves

solving the optimization problem by relaxing integrality con-

straints and then performing deterministic rounding. We com-

pare the quality of results generated by the optimal brute-force

algorithm with that of our approximate algorithms. Due to

very high time complexity of brute-force, we are only able to

run these algorithms for small values of k and m. We notice

that our designed approximate algorithms routinely achieve

approximation factor as high as 90%.

2) Online User Study: We now describe our user study

performed through the crowd-sourcing platform Amazon Me-

chanical Turk using Flickr dataset.The goal of this study is

twofold: first, investigate improvement in user satisfaction in

presence of a feedback box; second: analyze user’s affinity to

different group recommendation functions.

TABLE I
USER STUDY STATISTICS

#Cities #Total POIs #Users #HITs #Worker/HIT
3 439 270 54 5

TABLE II
USER STUDY: USER SATISFACTION IN GENERATED RECOMMENDATION

WITH AND WITHOUT RESPONSE BOX

FB-LMD R-LMD FB-LMS R-LMS R-AGD R-AGS
Si(S) 5% 0% 65% 30% 0% 0%

D(S) 0% 0% 40% 35% 0% 25%

R(S) 10% 5% 62% 10% 3% 10%

Si(M) 20% 0% 40% 0% 5% 35%

D(M) 11% 2% 35% 7% 3% 42%

R(M) 1% 1% 38% 20% 0% 40%

Required statistics are described in Table I. We only con-

sider reliable user feedback, i.e., those users who satisfactorily

pass qualifying test to check if they are familiar with a city. We

choose 3 cities (London, San Francisco, and Barcelona) and

their associated POIs for this study. We consider two different

group sizes - small(S) groups with 5 users, and medium(M)

groups with 15 users. k is set to 10. For each city and

group size combination, we created a HIT (Human Intelligence

Task) for similar(Si) (aggregated pair-wise similarity ≥ 0.4),

dissimilar(D) (≤ 0.06), and random(R) user groups.

421

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

5

10

15

20

25

30

35

3 4 100 250 500 1000 2000 5000

Ru
nt

im
e o

f B
ru

te
 Fo

rc
e (

in
 m

in
ut

es
)

Ru
nt

im
e (

in
 s)

k (n=5000, m=5000)

R-AGS

R-LMS

R-AGD

R-LMD

Brute Force

Fig. 2. Recommendation: k Vs Runtime

0

5

10

15

20

25

30

1000 2000 3000 5000 10000 20000 25000

Ru
nt

im
e

(in
 s)

n (k=100, m=5000)

R-AGS

R-LMS

R-AGD

R-LMD

Fig. 3. Recommendation: n Vs Runtime

0

2

4

6

8

10

12

14

16

18

50 100 250 500 1000 2000 5000

Ru
nt

im
e

(in
 s)

m (k=100, n=5000)

R-AGS

R-LMS

R-AGD

R-LMD

Fig. 4. Recommendation: m Vs Runtime

0

5

10

15

20

25

30

35

40

45

1000 2000 3000 5000 10000 20000 25000

Ru
nt

im
e (

in
 s)

n (k=100, m=5000)

FB-LMS

FB-LMD

FB-AGD

Fig. 5. Feedback box : n Vs Runtime

0

5

10

15

20

25

30

35

50 100 250 500 1000 2000 5000
Ru

nt
im

e (
in

 s)

m (k=100, n=5000)

FB-LMS

FB-LMD

FB-AGD

Fig. 6. Feedback box : m Vs Runtime

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

20 30 40 50 75

Us
er

 Sa
tis

fa
ct

io
n

n (k=20, m=50)

R-AGS

R-LMS

R-AGD

R-LMD

Fig. 7. Feedback box: n Vs User Satisfaction
for Similar groups

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

0.1 0.2 0.3 0.4 0.5

ΔU
se

r S
at

isf
ac

tio
n

Group Similairity (k=20, n=25, m=50)

ResLMS

ResLMD

ResAGS

ResAGD

Fig. 8. Feedback box: Group Similarity Vs
User Satisfaction

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FB-LMD R-LMD
only

FB-LMS R-LMS
only

R-AGD R-AGS

Av
er

ag
e U

se
r R

at
in

g

Similar

Dissimilar

Random

Fig. 9. User Study: User Rating for recom-
mendations (Small group)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FB-LMD R-LMD
only

FB-LMS R-LMS
only

R-AGD R-AGS

Av
er

ag
e U

se
r R

at
in

g

Similar

Dissimilar

Random

Fig. 10. User Study: User Rating for recom-
mendations (Medium group)

0

0.05

0.1

0.15

0.2

0.25

4% 8% 12% 16% 20%

|Δ
Ag

gr
eg

at
e G

ro
up

 Sa
tis

fa
ct

io
n|

%Preference Updates (k=20, n=25, m=50), Robustness = 20%

ResLMS

ResLMD

ResAGS

ResAGD

Fig. 11. Robustness: Percentage of Preference
Updates Vs Group Satisfaction

0

0.05

0.1

0.15

0.2

0.25

4% 8% 16% 32% 64%

|Δ
Ag

gr
eg

at
ed

 G
ro

up
 Sa

tis
fa

ct
io

n|

Robustness Weight (k=20, n=25, m=50), 20% Preference update

ResLMS

ResLMD

ResAGS

ResAGD

Fig. 12. Robustness: Weight Vs Group Satis-
faction

0

2

4

6

8

10

12

14

16

18

4 8 12 16 20

Ru
nt

im
e (

in
 s)

Robustness Weight (k=20, n=25, m=50)

R-AGS

R-LMS

R-AGD

R-LMD

Fig. 13. Robustness: Weight Vs Runtime

HIT Design: We designate one of the users in the group as

the user who updates her preferences and use her recent prefer-

ences for the experiment. We generate group recommendation

for the entire group for each combination of recommendation

function and user satisfaction, with and without the presence of

feedback box;. For Aggregated Voting, we only consider the

recommendation generation task, as Figure 8 clearly shows

that the feedback box has the least effect in improving user

satisfaction. A worker of the HIT is asked to evaluate the

group recommendation as if she were the designated user who

updates her preference. In addition to her own preference,

she has also access to the preferences of other members of

the group. We ask the worker to perform two tasks. In the

first, she is asked to independently evaluate the output of each

recommendation function (Figures 9,10) with ratings 1 − 5

(5- most satisfied, 1-least satisfied) . In the second, she is

asked to choose which recommendation is preferred by her

in comparison with the rest. The worker is not told which

method is used to generate which list. Percentage breakdown

of worker satisfaction is shown in Table II.

Result Interpretation: For the first task (Figures 9,10), we

observe that the workers in each of three different groups

(similar, dissimilar, random) clearly prefer the recommenda-

tion generated using the feedback box, rather than the one

without it. This behavior is consistent for both small and

medium sized groups, but to different degrees. It could also

be seen that feedback box seems to be more useful for similar

and random groups, than dissimilar groups. This is consistent

with our offline quality evaluations in Figure 8. For the second

task, we observe that workers overwhelmingly prefer Overlap

422

Similarity with and without feedback box. It can be explained

by the fact that it is a simpler satisfaction measure for users

to understand than Hamming distance.

Satisfaction is higher in smaller groups. For medium groups,

the two most popular recommendation functions are Least

Misery under Overlap Similarity and Aggregated Voting under

Overlap Similarity. This behavior can be explained as follows:

Figure 7 shows that regardless of the recommendation func-

tion, user satisfaction decreases when group size increases.

Furthermore, for a constant k, the effectiveness of the feed-

back box decreases with increased group size. Hence when

the group size increases, the workers fall back to simpler

recommendation functions such as Least Misery with Overlap

Similarity and Aggregate Voting with Overlap Similarity.

E. Recommendation Robustness: Effectiveness and Runtime

Recommendation robustness is set as a soft constraint,

which could further be tuned (see Section VI). For example,

to achieve a robustness weight of 20% after the preference

update of a user with k = 20,m = 125, n = 75, the previous

recommendation needs to be added 15 times.

We experimentally demonstrate the effectiveness of robust-

ness to counterbalance the effect of feedback box and ensure

overall group satisfaction, when multiple users use feedback

box. In Figure 11, X-axis varies the percentage of preference

updates, with a fixed robustness weight of 20%, whereas, in

Figure 12, we vary the robustness weight in X-axis with a fixed

preference update of 20%. The Y-axis measures the difference

in group satisfaction before and after the preference updates.

Even though feedback box maximizes the preference of indi-

viduals who use it, but with appropriately designed robustness

weights, the overall group satisfaction could be preserved

significantly (the y-axis measures the absolute difference in

group satisfaction between generated recommendation with-

out feedback box, and recommendation with feedback box

and robustness weight). Finally, as Figure 13 demonstrates,

robustness is scalable as increasing robustness weight results

in very small increase in runtime.

VIII. RELATED WORK

Our work is the first to study flexible Boolean preferences

in group recommendations with a novel feedback box idea.

Context Aware Recommendation: [6], [7] have

shown that users’ mood, context and company (other

users) may affect their preferences. These works present a

multidimensional approach to recommender systems that can

provide recommendations based on additional contextual

information (such as time, location and accompanying-people)

besides the typical information on users and items. These

works also support multiple dimensions, extensive profiling,

and hierarchical aggregation of recommendations [20]. In

contrast, we propose techniques to accommodate dynamic

updates in an effective and efficient manner.

Group Recommendation: The task of group

recommendation [4], [1], [21] has attained significant

research attention in recent past. There are two prevalent

approaches in group recommendation computation [3]: virtual
user and recommendation aggregation. We adopt the latter

for its flexibility. It has been also argued that the presence of

appropriate group recommendation semantics is of paramount

importance in successful group recommendation process.

The objective of this research is not proposing new group

recommendation semantics, rather, we leverage existing

semantics in the analysis of the feedback box.

IX. CONCLUSION

We motivate the need for flexible user preferences in group

recommendation and develop a feedback box that computes

for each user with evolving preferences the best feedback to

provide to maximize her satisfaction in the generated recom-

mendation. We present robustness to counterbalance the effect

of feedback box and ensure group satisfaction. We present a

rigorous theoretical and empirical study that corroborates the

usefulness of this box.

REFERENCES

[1] S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and C. Yu, “Group
recommendation: Semantics and efficiency,” PVLDB, 2009.

[2] L. Boratto, S. Carta, A. Chessa, M. Agelli, and M. L. Clemente, “Group
recommendation with automatic identification of users communities,” in
Web Intelligence/IAT Workshops, 2009, pp. 547–550.

[3] A. Jameson and B. Smyth, “Recommendation to groups,” P. Brusilovsky,
A. Kobsa, and W. Nejdl, Eds., 2007.

[4] M. O’Connor, D. Cosley, J. A. Konstan, and J. Riedl, “Polylens: a
recommender system for groups of users,” in ECSCW, 2001.

[5] D. P. Myatt, “On the theory of strategic voting,” University of Oxford,
Department of Economics, Economics Series Working Papers 186, 2004.

[6] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” TKDE, vol. 17, no. 6, pp. 734–749, Jun. 2005.

[7] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin, “In-
corporating contextual information in recommender systems using a
multidimensional approach,” ACM Trans. Inf. Syst., Jan. 2005.

[8] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Boston, MA, USA: Addison-Wesley, 1999.

[9] S. B. Roy, G. Das, S. Amer-Yahia, and C. Yu, “Interactive itinerary
planning,” in ICDE, 2011.

[10] F. P. Preparata and M. I. Shamos, Computational geometry: an intro-
duction, 1985.

[11] J.-H. Lin and J. S. Vitter, “Approximation algorithms for geometric
median problems,” 1992.

[12] D. Hochbaum, “Heuristics for the fixed cost median problem,” Math
Programming, vol. 22, pp. 148–162, 1982.

[13] G. Cornuejols, G. Nemhauser, and L. Wolsey, “The uncapacitated facility
location problem,” in Discrete Location Theory, 1990, pp. 119–171.

[14] R. Chandrasekaran and A. Tamir, “Algebraic optimization: The fermat-
weber location problem,” Math. Program., vol. 46, pp. 219–224, 1990.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness, 1990.

[16] S. Fujishige, Submodular Functions and Optimization. Elsevier, 2005.
[17] Nemhauser and et. al., “An analysis of approximations for maximizing

submodular set functions–i,” Mathematical Programming, 1978.
[18] E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” in Maurer,

H., Ed., Cambridge, MA, USA. Springer-Verlag, 1991, pp. 185–208.
[19] P. Kumar, J. S. B. Mitchell, and E. A. Yildirim, “Approximate minimum

enclosing balls in high dimensions using core-sets,” ACM JEA, 2003.
[20] K. Stefanidis, N. Shabib, K. Nørvåg, and J. Krogstie, “Contextual

recommendations for groups,” in ER Workshops, 2012, pp. 89–97.
[21] K. McCarthy, M. Salamó, L. Coyle, L. McGinty, B. Smyth, and P. Nixon,

“Cats: A synchronous approach to collaborative group recommendation,”
in FLAIRS Conference, 2006, pp. 86–91.

423

